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ABSTRACT 

The American University in Cairo 

Transcriptional Regulatory Networks in Hepatitis C Virus-induced 

Hepatocellular Carcinoma 

By: Marwa Zahra 

Under the Supervision of: Dr. Hassan Azzazy & Dr. Ahmed Moustafa 

HCV is an epidemic affecting an estimated 160 million individuals worldwide or approximately 

2.35% of the world’s population.(1) This is partly because HCV exhibits high genetic variation 

which thereby characterizes each region with its own genetic prevalence. Therefore, 

understanding the transcriptional regulatory elements that influence the progression of liver 

disease in the presence of HCV infection is thereby crucial for diagnostic and therapeutic 

purposes. Systems biology provides a road map by which these elements may be easily 

identified.  In this study 124 microarray samples were assessed in order to determine 

differentially expressed genes for 4 tissue types/conditions (normal, cirrhosis, cirrhosis HCC, and 

HCC). Differentially expressed genes were assessed for their functional clustering and those 

genes were annotated with their potential transcription factors and miRNAs. Transcriptional 

regulatory networks were constructed to visualize each pairwise comparison between the 4 tissue 

types/conditions. In this study that 12 transcription factors were found to have high expression 

patterns amongst all 6 pairwise comparisons and these transcription factors also provide insight 

the conditions of the liver as it progresses through hepatic cirrhosis, hepatic steatosis, and the 

induction of cancer. With the plethora of miRNAs that are found in the liver, each liver condition 

was found to have its own signature miRNA expression pattern. In the 6 pairwise comparisons 

14 miRNAs were found to have high expression patterns in all 6 pairwise comparisons and their 

regulation in HCC was determined as well as their impact on cellular homeostasis. Based on the 

findings of this study and a systematic analysis of many studies it can be concluded that as the 

liver progresses from cirrhosis to steatosis and eventually becoming carcinomic there are specific 

transcription factors regulating this transition through each stage. Whereas the condition of the 

liver digresses, the downregulation of miRNAs’ expression makes the transition of the liver 

through each pathological stage more apparent. Therefore, an understanding of the 

transcriptional regulatory attributes acts as a road map to provide interference strategies in order 

to target the stages in the progression of HCV induced HCC. 
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Chapter 1. Introduction 

I. HCV 

a. Epidemiology 

HCV is an epidemic affecting an estimated 160 million individuals worldwide or approximately 

2.35% of the world’s population. (1) This is partly because HCV exhibits high genetic variation 

which thereby characterizes each region with its own genetic prevalence. How HCV affects 

every area in the world is specific to the genotype of HCV that is prevalent in that area. HCV 

strains are classified into seven genotypes (1-7) based on  phylogenetic and sequence analyses of 

whole viral genomes.(2)Within each genotype, HCV is classified into 67 confirmed and 20 

provisional subtypes. Strains that belong to the same subtype differ at <15% of nucleotide 

sites.(3)  

The geographic distribution of HCV genotypes is very complex. HCV genotype 1 is the most 

prevalent worldwide, comprising 83.4 million cases (46.2% of all HCV cases). Approximately 

one-third of those cases are in East Asia alone. Genotype 3 is the next most prevalent globally 

comprising 30.1% of all cases and 54.3 million cases. While genotypes 2, 4, and 6, are 

responsible for a total 22.8% of all cases of HCV globally. Finally, genotype 5 comprises the 

remaining <1% of cases globally. Although genotypes 1 and 3 dominate in most countries 

irrespective of economic status, the largest proportions of genotypes 4 and 5 are in lower-income 

countries. (4) 

While HCV exhibits high genetic variation as well as a rapid reproduction rate the reason as to 

how this virus has become an epidemic lies not in the lethality of the virus rather in the manner 

of its transmission. Blood transfusions, injection drug use, use of contaminated glass syringes, as 
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well as nosocomial infections are the main ways behind HCV transmission. Latin American 

countries have been very active in screening blood supplies, thus minimizing the risk of 

transmission through transfusion. (1) However, as in most western countries, other risk factors 

are currently playing a major role in accounting for new infections. The main risk for HCV 

transmission in countries with well-established HCV screening programs and lower HCV 

prevalence was found to be injection drug use.  

Also, immigration from endemic countries was sometimes a major factor impacting the total 

number of HCV-infected persons: approximately 70% of cases in Israel, 37% in Germany and 

33% in Switzerland were not born in the country. These data express the high heterogeneity of 

HCV across Europe, Canada and Israel. While most countries had prevalence rates of HCV cases 

from 1 to 2%, several other countries presented relatively high prevalence rates, such as Egypt 

(15%), Pakistan (4.7%) and Taiwan (4.4%). (1) Nosocomial infections and injection drug use are 

major risk factors in the region, and in some countries blood donors are still not universally 

screened.  These regions are in desperate need of effective health policies that are watched over 

by stringent surveillance systems in order to control the spread of HCV.  

Due to aging of the current HCV-infected population, the problem of hepatitis C is expected to 

increase. A study from USA has shown that aging of the HCV infected population has already 

resulted in a significant increase in the prevalence of cirrhosis and hepatocellular carcinoma 

(HCC) cases reported in that country during the period 1996–2006. According to another work 

from the same country, the number of HCV-related cirrhosis cases is estimated to increase by 

24% and that of decompensated cirrhosis cases by 50%. (5) Also, a synergistic effect on 

morbidity and mortality is anticipated due to the overlapping worldwide epidemics of HCV, 

therefore the above estimates should be considered conservative. 
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b. HCV in Egypt 

In Egypt, the spread of HCV stems from the outbreak of blood flukes that cause schistosomiasis. 

In the 1920s, in an attempt to treat the schistosomiasis outbreak with injection of potassium 

antimony tartrate through a mass inoculation campaign; the world’s largest iatrogenic spread of 

blood-borne pathogen was created. Millions of intravenous injections were given with 

inadequately sterilized equipment which caused the spread of HCV. (6) 

Today Egypt has a HCV epidemic, which is the largest HCV epidemic in the world. The most 

common variant of HCV in Egypt, genotype 4, has the highest pravelence and accounts for more 

than 90% of infections. (7) Given a national population of about 80 million persons, 7.8 million 

were estimated to be asymptomatically infected with HCV comprising a large reservoir of HCV 

in the population. The Egyptian demographic health survey in 2008, estimated HCV prevalence 

among the 15–59 years age group to be 14.7%. (8) 

In order to evaluate the magnitude and patterns of exposure to HCV transmission 

epidemiological tools are needed. Also, for intervention to reduce HCV infection in Egypt, 

factors related to the distribution and determinates of HCV exposure must be evaluated.(9) 

c. HCV Infection  

HCV is a member of the Flaviviridae family, and is comprised of a single-stranded RNA genome 

9.6 Kb in size and positive polarity. HCV has an error-prone RNA-dependent RNA polymerase 

that produces a highly variable progeny. This error-prone replication has allowed for an original 

HCV ancestor  to evolve into seven genotypes and more than 80 subtypes due to the nucleotide 

variation that is among different HCV isolates (10). Also, due to the high mutation rate each 

infected individual has a collection of distinct but related HCV genomes generated by 

replication, known as quasi-species (11).  
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HCV viral particle is 40-80 nm in size. Viral particles are enveloped and contain their genetic 

material bound to the core protein (12). The viral genome is a positive stranded RNA that serves 

as a messenger RNA. The open reading frame is flanked by highly structured untranslated 

regions (UTR) that contain several domains important for viral replication. These domains are 

fairly well conserved compared to the rest of the genome, thus supporting their importance in 

viral fitness (13).The open reading frame encodes a polyprotein cleaved co- and post-

transcriptionally by viral and cellular proteases into the three major structural proteins (core, E1 

and E2) and seven non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B).  

The viral particle is formed by the two envelope glycoproteins, E1 and E2, required for cell 

attachment and entry, and by the core capsid protein. P7, forms an ion-channel and participates 

in virus assembly and in the release of infectious virions (14). NS2 autoprotease also participates 

in virus assembly and might affect replication indirectly, as the cleavage at the NS2/NS3 

junction seems to be a rate limiting step and a fully processed NS3 protein is required for 

replication. NS3, NS4A, NS4B, NS5A and NS5B form the replicase complex. The viral 

helicase/protease NS3, has an essential role in the processing of the non-structural proteins and 

of some host cellular proteins (14). NS4A is a cofactor that leads NS3 to the endoplasmic 

reticulum (ER) it also increases NS3 stability and protease and helicase activity. NS4B is 

involved in packaging the virus and also participates in membrane remodeling. NS5A is 

multifunctional in that it induces the formation of a membranous web, is involved in replication 

and in viral assembly, and affects the antiviral response (15). NS5B is the RNA dependent RNA 

polymerase required for replication and HCV assembly (16). 

d. HCV Replication 
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In the blood, HCV virions circulate as lipo-viro-particles (LVPs) which are found to be 

associated with very low or low-density lipoproteins (VLDLs and LDLs). These LVPs may also 

associate with high levels of triglycerides, Apolipoprotein (Apo) E, ApoC, ApoB and low levels 

of cholesterol or phospholipids (17). This HCV virion association with lipids may facilitate its 

infection of hepatocytes which are the primary target for infection while at the same time aiding 

in its escape from neutralizing antibodies.  

The exact mechanism of viral entry is still unclear entry occurs very likely by clathrin-mediated 

endocytosis (18). It has been suggested that the viral envelope proteins E1 and E2 bind different 

cellular proteins identified as receptors for viral entry such as scavenger receptor class B type 1 

(SRB1) and CD81 (19). Also required for entry are the tight junction proteins claudin-1 

(CLDN1) and occludin (OCLN), the epidermal growth factor receptor (EGFR) and the Niemann-

Pick C1-like cholesterol absorption protein (NPC1L1), which may bind to virion-associated 

cholesterol at a late stage of HCV entry (20). 

Once inside acidification of the endosome induces fusion of the viral envelope so that the virion 

undergoes un-coating.  This fusion between the endosome and virion envelope leads to the 

release of the viral RNA into the cytoplasm. In the cytoplasm the viral RNA is transported to the 

rough ER for translation of the viral polyprotein; which is then further processed into the 

structural and non-structural proteins. HCV replicates in association with a specialized 

membrane structure named membranous web (MW), formed by double-membrane vesicles (21). 

The remaining components of the replication complex alongside the actions of NS4B and NS5A 

are the key players in the formation of the MW. NS5B which is the viral RNA dependent RNA 

polymerase, uses the viral genome as a template to produce negative-strand RNA intermediates. 
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These intermediates are then amplified to large amounts of new positive-strand RNA viral 

genomes.  

Assembly of HCV virion is brought about by the synchronized actions of HCV structural 

proteins along with the viral replication complex, and takes place in close proximity to 

membrane bound lipid droplets (LD). Lipid droplets (LDs) are intracellular organelles storing 

cholesterol and triglycerides, and play an essential role in viral packaging.  Inhibition of the 

synthesis of their lipid components blocks viral assembly. NS5A, as part of the replication 

complex, connects virus replication and packaging. New virus particles are bound to VLDL or 

LDL components and use the secretory pathway to be released as LVPs (22). Thus, HCV release 

is intimately associated with the synthesis of VLDLs and the lipid secretion pathway (17). Once 

released, LVPs can infect new host cells. 

e. HCV and Interferon  

The IFN-mediated innate immune response protects the cell against infection. Upon viral 

infection, several viral features or pathogen-associated molecular patterns (PAMPs) are detected 

by canonical or non-canonical receptors located on the cell membrane or intracellularly. 

Canonical receptors are receptors such as the retinoic acid-inducible gene I (RIG-I) or the 

Melanoma Differentiation-Associated protein 5 (MDA5) (23). In HCV for example, RIG-I can 

recognize the RNA genome within hours of infection and may initiate signaling before extensive 

viral protein synthesis takes place (24). 

 HCV can also be sensed by non-canonical receptor, protein kinase R (PKR) and DEAD box 

helicase DDX3X which are able to induce expression of antiviral genes. The first HCV sensor 

protein kinase R (PKR) is a kinase that is phosphorylated and activated by dsRNA binding and 

recognizes the 5´UTR of the HCV genome (25). The DEAD box helicase DDX3X, recognizes 
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3´UTR of HCV genome. DDX3X is a multifunctional protein involved in immune response 

activation (25). Although  both PKR and DDX3X are antiviral, both are required for efficient 

HCV replication (26). 

The activation of the Interferon regulatory factor (IRF) 3 and nuclear factor-κΒ (NF-κΒ) are 

independent of the sensors that initiate cascades for canonical and non-canonical receptors (25). 

IRF3 induces the expression of some IFN stimulated genes (ISGs), NF-κΒ induces pro-

inflammatory cytokines and together, IRF3 and NF-κΒ serve to induce transcription of IFNβ. 

Then, the signaling that is initiated by IFNβ leads to upregulation of IRF7, which, together with 

IRF3, can lead to the synthesis of several IFN subtypes (25). 

IFNλ signaling has a special impact on HCV infection in that several single nucleotide 

polymorphisms within the IFNλ loci associate strongly with the natural clearance of HCV 

infection and with response to IFNα-based antiviral therapy (27). Several ISGs function to 

induce an antiviral state that affects HCV infection; such as STAT1, STAT2, IRF1, 3, 7 and 9, 

PKR, OAS or RNase L which work to increase cell sensitivity to PAMPs. These in turn function 

as positive regulators to reinforce IFN signaling and prime cells for enhanced pathogen 

detection. For example IRF1, a transcription factor that induces a secondary wave of ISG 

transcription probably evolved to maintain an antiviral state after pathogen-mediated inhibition 

of the first wave of IFN response (28).  

It becomes apparent as the role of ISGs as antivirals and positive regulators of the IFN response, 

that IFN is able to eliminate HCV infection. IFN therapy has been used in the treatment of HCV 

infected patients until very recently as treatment by overexpression of specific ISGs is not 

efficient. 
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This combined action of several ISGs causes a strong inhibition of HCV, rather than the single 

action of any one of several ISGs has lead HCV to counteract the antiviral role of the IFN 

response, and has evolved to block IFN induction and interfere with the action of several 

antiviral factors. The viral NS3-NS4A protease, which is a key component in the HCV innate 

immune evasion cleaves and inactivates MAVS and TRIF, interfering with the signaling of the 

major HCV sensors and attenuating IFN production (29). NS4A/B precursor then inhibits the 

transport of MHC Class I molecules to the cell surface. NS5A and the core proteins block the 

STAT pathway by several means (25). . 

HCV has also evolved to exploit the expression of ISGs. ISGs function as negative regulators of 

the IFN response; since, viruses use many cellular systems, when the antiviral response affects 

the machineries required for viral viability; it compromises its own integrity. Yet, once IFN 

responses wear out it leads to autoimmune disorders (30). Therefore, the cell has evolved to 

express some ISGs that function as negative regulators of the IFN pathway which are essential to 

limiting the duration and strength of the IFN response and aid the cell back to homeostasis.   

II. Liver Disease and HCV 

At the onset of HCV infection the liver begins to react to the virus in many ways. As the virus 

begins to replicate and the liver sends signals to ISGs to react to these new particles in the body; 

the stage begins to set for changes to in the liver. HCV may have no effect on some livers, 

however for the majority of cases HCV digresses the condition of the liver in stages. These 

stages include the digression from cirrhosis, to steatosis, and eventually carcinoma. Clinical 

symptoms or signs of liver disease may or may not appear and a minority of patients experience 
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clinical symptoms. However, symptoms that do accompany liver disease include fatigue nausea, 

poor appetite, muscle aches, arthralgias, feverishness, weakness, and weight loss. Aside from 

symptoms, the majority of patients with HCV are recognized by having raised ALT serum levels. 

Again, a minority of patients may not have elevated ALT levels and these patients may be 

described as “healthy carriers”. Studies have shown however that prolonged elevated ALT levels 

are associated with the development of cirrhosis in the liver. (31) 

 
Figure 1: HCV infection and the progression of liver disease. Here it becomes apparent that with the right conditions liver 

disease progresses to HCC over a period of time. Although this is not a central dogma of liver disease, progression to HCC may 

proceed in this manner if all of the conditions shown are present.(32)   

 

Chronic HCV can lead to cirrhosis which can develop rapidly; within 1–2 years of exposure, or 

slowly within 2–3 decades. In studies with 10–20 years of follow-up, cirrhosis develops in 20–30 

percent of patients.  Once cirrhosis develops symptoms of end-stage liver disease can appear. 

These symptoms are marked by fatigue, muscle weakness and wasting, fluid retention, easy 

bruisability, upper intestinal hemorrhage, jaundice, dark urine, and itching. Yet, some patients 

with cirrhosis remain asymptomatic of liver disease until they have major complications of 

cirrhosis, such as variceal hemorrhage or ascites or they die of an unrelated cause. (31) 

http://www.nature.com/nri/journal/v14/n3/fig_tab/nri3623_F1.html
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Another condition that can hasten the development of cirrhosis in the liver and lead to the 

progression of end-stage liver disease in the presence of HCV infection is hepatic steatosis. 

Hepatic steatosis is defined as excessive lipid accumulation within the hepatocyte cytoplasm and 

has been recognized as the sole route for a direct cytopathic effect by the HCV. Several 

mechanisms have been proposed as to the process of lipid accumulation in the liver such as; 

HCV core protein may be interacting with apolipoprotein. AII which is a major component of 

high density lipoproteins and this interaction may be causing hepatocellular steatosis.(33) Also, it 

has been suggested that the HCV core protein induces oxidative stress within the mitochondria 

which leads to or contributes to lipid accumulation.(34) Yet, in the retrospect it is important to 

note that hepatic steatosis leads to the progression of end-stage liver disease, whether steatosis 

achieves this by aggravating fibrosis itself or the factors that are causing steatosis are also 

aggravating fibrosis is still unknown. 

It is important to note that while IFN treatment may reduce the incidence of HCC. HCC is an 

inevitable event as the liver digresses in its condition by steatosis and cirrhosis. The mechanism 

by which this eventual digression leads to carcinoma is still unknown. However, through 

analysis of the key components that lead to the progression of liver disease to carcinoma it is 

apparent that the condition of the liver is at large the reason behind the incapability of the liver to 

maintain cellular homeostasis and in turn eventually digresses to carcinoma.  

III. HCV induced Hepatocellular Carcinoma 

a. Pathogenesis 

The development of HCV-induced HCC is progressive and may occur over a period of 20-40 

years. This multi-step progression involves establishment of chronic HCV infection, chronic 

hepatic inflammation, progressive liver fibrosis, initiation of neoplastic clones accompanied by 
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irreversible somatic genetic/epigenetic alterations, and progression of the malignant clones in a 

carcinogenic tissue microenvironment. Yet, each step of HCV-induced hepato-carcinogenesis is 

a potential target for therapeutic intervention or chemoprevention. Since, HCV is a RNA virus 

with limited integration of its genetic material into the host’s genome, the carcinogenic potential 

of HCV is generally assumed to be linked to indirect mechanisms.  A major obstacle for the 

understanding of the mechanisms linking HCV infection, inflammation and carcinogenesis is the 

lack of an in vitro and in vivo model systems. (35) 

b. Host factors affecting Susceptibility 

There have been associations made between various host polymorphisms associated with the 

immune system and HCV-induced HCC. A Japanese genome-wide association study comparing 

HCV-related HCC patients with chronic hepatitis C patients identified a single nucleotide 

polymorphism (SNP) in MHC class I polypeptide-related sequence A (MICA - rs2596542), 

which is involved in response of dendritic cells to type-I interferon in chronic hepatitis C (36).  

Another SNP in the MICA promoter (rs2596538) was associated with increased serum soluble 

MICA protein. In another study, in Caucasian HCV patients in Switzerland did not replicate the 

association with HCC for this locus, but for a nearby locus in HCP5 (rs2244546), suggesting that 

the MICA/HCP5 region contains a potential susceptibility locus.(37) An IL28B variant 

(rs12979860), initially identified as an interferon response predictor, may be associated with 

increased risk of HCV-related HCC (38).  

 

Also, SNPs in genes associated with metabolic functions have also been weakly associated with 

HCV-induced HCC. In patients with chronic HCV with advanced fibrosis a positive association 

has been found between liver iron deposition and higher incidence of HCC (35). Also, a SNP in 
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the patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene (rs738409) associat-

ed with alcoholic and non-alcoholic steatohepatitis may have weak association with HCV-related 

HCC (35, 39). 

c. Assessment of Risk: HCV-induced HCC 

Due to the high prevalence of HCV-induced cirrhosis and the population that is at risk of 

developing HCC, the need for surveillance is essential, and yet probably unmanageable. For 

instance, despite guidelines recommending HCC surveillance in subjects with cirrhosis, most 

patients at risk of HCC in the US do not receive recommended regular surveillance. Only 12% of 

cirrhotic HCV patients had routine annual surveillance in one US Veterans Affairs series and 

only 2% of HCV patients who developed HCC had previous appropriate screening in another se-

ries. Also, in a population-based US study, less than 20% of patients with cirrhosis who 

developed HCC received regular surveillance. (35)  

This thereby expresses the need for prognostic indicators that would actively stratify HCV 

subjects, as well as patients with other liver diseases, into clearly defined risk groups to enable 

effective clinical management of patients (40). 

IV. Transcriptional Regulation 
  

The regulation of transcription is the means by which the cell facilitates the regulation of DNA to RNA in 

order to orchestrate gene activity. The attributes that aid in this facilitation are transcription factors and 

miRNAs. These attributes fine tune the rate of gene regulation and in turn affect overall transcription 

regulation.  

a. Transcription Factors 
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Transcription factors include a wide number of proteins that regulate the transcription of genes. 

These, transcription factors, are proteins that are involved in the converting or transcribing DNA 

into RNA. Transcription factors have DNA-binding domains that allow them to bind to specific 

sequences of DNA.(41)  Those transcription factors with promoter sequences bind to a DNA 

promoter sequence near the transcription start site and help form the transcription initiation 

complex. (42)While, other transcription factors bind to regulatory sequences, such as enhancer 

sequences and can stimulate or repress transcription of the related gene. (42) The action of 

transcription factors allows for unique expression of each gene in different cell types and during 

development. 

b. miRNAs 

MicroRNAs act to fine-tune the expression of as much as 30% of all mammalian protein-

encoding genes. Mature miRNAs are short, approximately 22 nucleotides in length, and single-

stranded RNA molecules.(43) Their diverse expression patterns allow them to regulate many 

aspects of development and physiology.(44)  

While the majority of the characterized miRNA genes are intergenic, or oriented antisense to 

neighboring genes and are therefore transcribed as independent units. A miRNA gene may also 

be transcribed together with its host gene, which provides a means for coupled regulation of 

miRNA and protein-coding gene.(45) 

As much as 40% of miRNA genes may lie in the introns of protein and non-protein coding genes 

or even in exons of long nonprotein-coding transcripts.(46) These are found in a sense 

orientation, and thus usually are regulated together with their host genes. Other miRNA genes 
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with a common promoter include the 42-48% of all miRNAs originating from polycistronic 

units. (46) 

The DNA template is not the final word on mature miRNA production: 6% of human miRNAs 

show RNA editing (IsomiRs), the site-specific modification of RNA sequences to yield products 

different from those encoded by their DNA.(47) This increases the diversity and scope of 

miRNA action beyond that implicated from the genome alone. 

V. Microarray Analysis 
Genes in biology are studied in many ways and analyzed through many perspectives, one of the 

most indispensable tools that biologists use to monitor gene levels in a given organism.  A 

microarray is a glass slide on to which DNA molecules are fixed at specific locations called 

spots; each spot may contain copies of identical DNA molecules that uniquely correspond to a 

gene(48). This DNA may either be genomic or a short stretch of oligo-nucleotide strands that 

correspond to a gene.  

Microarrays are manipulated in a variety of ways in order to measure gene expression. One of 

the most popular methods used is a means of comparison between a set of genes from a cell in a 

particular condition to the same set of genes in a reference cell under normal conditions. This is 

done by extracting RNA from these cells and converting it into cDNA using reverse transcriptase 

and nucleotides labelled with different fluorescent dyes.  These dyes allow for samples to be 

differentially labeled. These samples then are allowed to hybridize onto the same glass slide 

where they will bind to specific spots on the glass slide containing its complementary sequences. 

Spots on the hybridized microarray are then excited by a laser and scanned at wavelengths 

suitable to the dyes used. The fluorescence that is emitted corresponds to the concentration of 
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bound nucleic acid, and the final image of the microarray is a spot that corresponds to a gene 

with an associated fluorescence value expressing the relative expression level of that gene. (48) 

a. Data Analysis 

There are many sources of systematic variations that may affect gene expression levels. 

Variation may arise from differential labeling efficiency of fluorescent dyes, or different amount 

of starting mRNA in the two samples. In order to eliminate variations and allow for a honed 

comparison of data from two samples the data that is obtained is normalized. Normalization is 

performed by choosing a gene-set for which expression levels should not change under the 

conditions studied. That gene set is expected to be 1, and any variability that is seen in other 

gene- sets is calculated based on its deviation.  This normalization thus preserves biological 

variations and minimizes experimental variations. Several algorithms may also be called upon in 

order to achieve normalization; these include robust microarray analysis (RMA), GC-RMA as 

well as Microarray Analysis Suite (MAS5.0). These algorithms only differ in their way of 

background correction, scaling and calculation of the normalization factor.(49)  

b. Determining Biological Relevance 

Once data has been normalized it may be inspected for biologically significant variations that are 

statistically significant. A fold change value is the means by which biological significance is 

displayed. This fold change value is calculated as the ratio between the log expression intensity 

of a certain gene compared to its normal condition expression value. The higher this value, is the 

greater the biological significance. However, statistical significance for a data set is determined 

by another value the p-value; which is defined as the probability of accepting the NULL 

hypothesis when it should be rejected.  The higher this value the less the data is statistically 

significant. These statistical tests when applied provide a set of genes that are differentially 

expressed (DE).  These genes are of particular interest in that they show biological and statistical 
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significance across all experimental conditions and in turn express a strong over expression or 

down expression compared to their controls.(50) From this inferences can be made as to 

relationships between genes and their regulation in general.  

Data from microarray analysis or gene expression data can be used to infer regulatory 

relationships. Studies have showed that expression data may be used as a tool to make 

predictions about transcriptional regulators for a given gene or for a gene set as well as 

identifying modules of co-regulated genes and their transcriptional regulators by means of a 

probabilistic model.  This allows for further hypothesis to be made which are experimentally 

testable. (51) 

VI. Systems Approach 
The systems approach to biology is centralized around one particular theme which is the sum of 

the whole is greater than the sum of its parts. Since, the central dogma in biology is DNA to 

RNA to protein; it makes sense that one would approach a biological question in this manner, 

since no one of the pieces in the central dogma is enough to answer a biological question fully. 

Systems biology or the systems approach, studies biological systems by systematically breaking 

them down and looking at the gene, protein, and informational pathway responses. The 

integration of this data by means of mathematical models ultimately describes the structure of the 

system, and in turn answers questions that may arise to any disruptions that may happen to that 

system. (52) 

New technologies for systematically characterizing cellular responses have brought about this 

new approach to understanding biological systems.  Tools such as DNA sequencers, microarrays, 

and high-throughput proteomics have become the methods of choice for rapid and 

comprehensive assessment of biological system properties and dynamics. Microarrays are a 
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powerful tool that allows interrogation of complete human transcriptomes. Microarrays make it 

possible to distinguish single nucleotide differences and in turn add even the most miniscule 

details to the whole system. This increases the capacity for a suitable diagnostic approach to 

many diseases and a more refined method for approaching suitable treatment.  

Approaching a disease such as HCV using a systems approach is most effective, in that it is a 

very robust disease that attacks biological systems through many attributes. Especially when 

considering HCV as it induces HCC, this approach becomes most suitable as it looks, not only at 

the gene-gene interactions involved but also at the regulatory aspects of those genes.  This allows 

for the construction of transcription regulatory networks which takes into account all the 

regulatory elements that impress on a particular gene of interest. In these networks, transcription 

factors’ (TFs) databases such as TRANSFAC, JASPAR, and SWISSREGULON are utilized to 

obtain information about the binding motif sites related to these TFs, as well as the potential 

interacting genes. Also, understanding how HCV affects biological systems would not be 

complete without considering miRNAs. miRNAs are known to regulate gene transcription via 

the interaction with mRNA. Over 2500 mature human miRNA have been isolated and described 

in a public database known as miRBase.(52) Therefore, understanding the changes in gene 

transcription regulated by miRNAs and provoked by HCV may explain causes for fibrosis and 

carcinoma in liver tissues.  

In order to visualize all of the aspects that contribute to the regulation of a biological system 

Cytoscape 3.2.1 is utilized. Cytoscape is an open source software platform that allows for 

visualization of complex networks while at the same time integrating any data attributes to that 

network. This in turn allows for the visualization of a network as a whole system with all of the 

parts that may be involved in its regulation.  
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Since, HCV attacks the liver in a manner that disrupts its normal functioning, it is only feasible 

that in order to attack back at such a disease, that a clear picture must be drawn as to where, in 

the regulation of normal functioning, this disruption takes place. Accordingly, this thesis places 

an emphasis on the study of the interactions that take place in the transcription regulation that 

alters gene expression in HCV induced HCC.  
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Chapter 2. Hypothesis and Objectives 

HCV has always been studied in a manner that examines a specific attribute that is affected by 

infection. In this study, HCV is analyzed based on how it affects transcription regulation as a 

whole and eventually leads to Hepatocellular Carcinoma. In this study it is hypothesized that: 

Each tissue type or condition has a variable gene expression profile that determines its signature 

transcriptional regulatory network and therefore infers possible factors that influence HCV-

induced HCC. 

OBJECTIVE 1 

 

In this study our aim is to be able to determine first differentially expressed genes in 6 pairwise 

comparisons in order to be able to determine those genes that are influenced by HCV induced 

HCC.  

 

OBJECTIVE 2 

 

After determining those genes that are differentially expressed in each of the 6 groups, 

transcription factors and miRNAs associated with the regulation of those genes are to be 

determined and analyzed for their association with those genes. 

 

OBJECTIVE 3 

 

Once, the transcription regulators for the differentially expressed genes in each of the 6 groups 

have been determined, a network will be constructed in order to visualize the attributes that 

transcriptionally regulate the differentially expressed genes in each group.  
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Chapter 3. Materials and Methods 

Study design 

In order to study transcription regulation, first, the differential expression in each of the four 

sample clusters (normal, cirrhosis, cirrhosis with HCC, and HCC) were compared against one 

another, using R studio, and 6 groups were obtained: 

Group 1: Normal_ Cirrhosis; which compares normal mean expression values for differentially 

expressed genes against cirrhosis mean expression values for differentially expressed genes. 

Group 2: Normal_Cirrhosis HCC; which compares normal mean expression values for 

differentially expressed genes against cirrhosis HCC mean expression values for differentially 

expressed genes  

Group 3: Normal_HCC; which compares normal mean expression values for differentially 

expressed genes against HCC mean expression values for differentially expressed genes. 

Group 4: Cirrhosis _Cirrhosis HCC; which compares cirrhosis mean expression values for 

differentially expressed genes against cirrhosis with HCC mean expression values for 

differentially expressed genes. 

Group 5: Cirrhosis _ HCC; which compares cirrhosis mean expression values for differentially 

expressed genes against HCC mean expression values for differentially expressed genes.  

Group 6: Cirrhosis HCC _ HCC; which compares cirrhosis with HCC mean expression values 

for differentially expressed genes against HCC mean expression values for differentially 

expressed genes. 

After the differentially expressed genes were determined, these genes were annotated with their 

transcription factors and miRNAs in tables accessible to Cytoscape. The transcription regulatory 

networks obtained from Cytoscape were studied with reference to the literature.  

Softwares employed: 

In this study several softwares were employed. In order to attain microarray samples GEO which 

is a public functional genomics data repository supporting MIAME-compliant data submissions 

was employed. Within GEO array- and sequence-based data are accepted and tools are provided 

to help users query and download experiments and curated gene expression profiles. Once 

microarray data was provided R studio was employed in order to process microarray data for 
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further analysis. R studio is a free open source integrated development environment which 

utilizes a programming language for statistical computing and graphics. Visualization of 

transcriptional networks was performed using the software Cytoscape 3.2.1. which is an open 

source software platform for visualizing complex networks and integrating them with any type of 

attribute data. Finally, database for annotation visualization and integrated discovery (DAVID) 

was employed. DAVID is a bioinformatics tool that provides a comprehensive set of functional 

annotation tools for investigators to understand biological meaning behind large list of genes. 

Samples 

 The samples that were used in this study were obtained from a previous study, “Genes 

involved in viral carcinogenesis and tumor initiation in Hepatitis C virus- induced Hepatocellular 

Carcinoma” performed by the group of Mas V., etal. 2009. The samples corresponding to this 

study were obtained from the Gene Expression Omnibus (GEO) with the identification number 

GSE14323. From this database 124 samples were obtained and downloaded in the form of a 

compressed file 500MB in size. These samples were then extracted and prepared for further 

processing in the form of .cel files.  

Sample Characteristics 

 The study that was used was restricted to patients with HCV infection. These samples 

included 124 liver tissue samples obtained from 88 distinct patients, 41 HCV-cirrhotic from 

patients without HCC, 17 cirrhotic tissues from patients with HCC, and 47 HCV-HCC tissues. 

Also, 13 patients with HCC-cirrhosis provided both tumor and cirrhotic tissue, 3 patients 

provided both cirrhotic or tumor tissue for array processing, and 19 normal liver tissues were 



www.manaraa.com

32 
 

included. These patients were found to have normal liver function and histopathology, as well as 

the normal liver samples used which were also seronegative for HCV Ab.  

Sample Processing: R studio 

 The samples that were obtained were further processed using R version 3.2.0. Samples in 

the form of .cel files were found to be in two different affymetrix platforms because of the 

difference in probes used for the samples. Therefore, in R studio an affy bioconductor package 

was downloaded to read the samples in the form of .cel files and samples were separated into 

DATA1 and DATA2 based on the Affymetrix platform corresponding to the samples. DATA1 in 

R corresponded to samples GSM358107- GSM358111, while DATA2 corresponded to samples 

GSM358112- GSM358227. These samples were converted from .cel files which are files that 

correspond to light intensities into .cdf files that converted light intensities into probe 

concentrations using the affy Bioconductor package in R studio. After which these values were 

then converted into expression values using the Robust Multiarray Average (RMA). These 

expression values were then saved for further processing.  

Sample Processing: Determination of Differential Expression 

 In order to be able to analyze the dataset for differentially expressed genes, the samples 

were further analyzed using R version 3.2.0. Since this study contained 124 samples, these 

samples were grouped into 4 matrices, normal, cirrhosis, cirrhosis HCC, and carcinoma. The 

mean of the expression values was determined for the samples in each group and written into a 

new table with the probe ID beside it. A scatter plot was then created for groups against one 

another to show if there was differential expression. In order to test samples for biological and 
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statistical significance, the samples were filtered by a fold cut off of 2 and a p-value of 0.01. A 

volcano plot was then created in order to show biological and statistical significance.  

 Genes that were found to be both biologically and statistically significant from the 

volcano plot were filtered into a table by themselves based on the fold cutoff and p-value that 

were used as a criterion for filtration case by case. A logical vector was created in order to filter 

these genes and the fold cut off and p-value that was applicable for each case was setup in this 

vector in order for genes that were found to be true and true for both values were placed into this 

vector and written into a table.  

 In order to show the distance or similarity between groups after the filtered differentially 

expressed genes were written into each group a column dendogram was created. Row 

dendograms were also created in order to show similarity between differentially expressed genes 

in each case. A heat map was also created in order to visualize the differentially expressed genes 

across each group with yellow, corresponding to high expression, and red, corresponding to low 

expression.  

 Once the differentially expressed genes were determined for each case, they were 

manually paired with their corresponding transcription factors and miRNAs. Using various 

databases such as TRANSFAC, miRBASE, and GENECARDS, transcription factors and 

miRNAs were searched for in order to correspond to genes that were determined to be 

differentially expressed. These results were then written into a table in the form of a text file and 

were further processed.  

Systems Approach: Networks 
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 Tables that were created with differentially expressed genes and their corresponding 

transcription factors and miRNAs were evaluated using Cytoscape version 3.2.1.   Tables were 

imported in the form of text files and a network was created in order to visualize the structure of 

how the genes are connected to their transcription factors and miRNAs. In each network genes 

are colored in blue, transcription factors are in green, and miRNAs are in red. The size of genes 

corresponded to their fold change, and each network was analyzed and clusters were determined 

if any.  

 Differentially expressed genes were also functionally annotated using DAVID database. 

This database clustered genes in each case based on their function. Genes were delivered to the 

database in the form of a list, case by case, and the database clustered the list of genes based on 

the similarity of the genes functionally.  

Table 1: Summary of databases employed for analysis in this study. For each database that was employed a reference is given as 

a hyperlink by which this database may be accessed. 

Database Reference 

Gene Expression Omnibus (GEO) www.ncbi.nlm.nih.gov/geo  

DAVID https://david.ncifcrf.gov/  

TRANSFAC www.gene-regulation.com/pub/databases.html  

MirBASE www.mirbase.org  

GENECARDS www.genecards.org  

 

http://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov/
http://www.gene-regulation.com/pub/databases.html
http://www.mirbase.org/
http://www.genecards.org/


www.manaraa.com

35 
 

Figure 2: Schematic display of study design. As an overview of how this study was performed this diagram shows the process 

that the study proceeded in to create transcriptional regulatory networks for HCV-induced HCC. 
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Chapter 4. Results 

The samples in this study were obtained from the Gene Expression Omnibus (GEO) with the 

identification number GSE14323. The samples were broken down as shown in Figure 3, 124 

samples were obtained and analyzed using R studio in order to determine differential expression 

of genes in each of the 4 distinct samples’ clusters. 

 

 
Figure 3: Diagram of the samples obtained for this study from GEO (GSE14323). A total of 124 samples were obtained; as 19 

normal samples, 41 HCV-cirrhosis samples without HCC, 17 HCV-cirrhosis samples with HCC, and 47 HCV-HCC samples. 

These samples were further analyzed using Affymetrix microarray analysis.  

 

The means of the expression values for differentially expressed genes in each of the four sample 

clusters were placed into matrices so that they may be correlated against one another as shown in 

figure 3, the column dendogram.  

Total Number of 
Samples: 124 

41 HCV-Cirrhosis 
Samples without 

HCC 

17 HCV-Cirrhosis 
Samples with 

HCC 

47 HCV-HCC 
Samples  

19 Normal 
Samples  
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Figure 4: Column dendogram showing the correlation between the mean expression values of the genes in each of the 4 samples’ 

clusters. The greater the value on the y-axis the lower the correlation between the groups, as is apparent the highest correlation is 

between cirrhosis and cirrhosis HCC.   

 

As the value in the y-axis the lower the correlation between the groups, in figure 4 there is an 

obvious high correlation between the means of expression values for genes in the cases of 

Cirrhosis and Cirrhosis with HCC. Yet, the HCC samples showed to be more closely correlated 

to Cirrhosis Samples and not Cirrhosis HCC. Normal tissue samples showed the least correlation 

between Cirrhosis samples and Cirrhosis HCC samples, and showed more of a correlation with 

HCC samples in the mean expression values of genes.  

In order to further analyze the differential expression in each of the four sample clusters, they 

were compared against one another in the fore mentioned 6 groups; (normal_cirrhosis, 

normal_cirrhosis HCC, normal_HCC, cirrhosis_cirrhosisHCC, cirrhosis_HCC, 

cirrhosisHCC_HCC). For each group, a scattered plot and a volcano plot were generated using R 

studio. Afterwards, the differentially expressed genes were used to create transcription regulatory 

networks with their corresponding transcription factors and miRNAs.  
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Group 1 (Normal_ Cirrhosis) 

 

Since, each matrix corresponds to the expression values in RMA format obtained from 

each sample cluster, each matrix was analyzed against normal samples and a scatter plot was 

produced. In figure 5A each gene has an expression value which corresponds to a specific circle 

in the plot; those circles that are away from the red line correspond to genes that are 

differentially expressed. In order to further analyze these samples for biological and statistical 

significance a volcano plot was produced.  

 
Figure 5: (A) Scatter plot of means of expression values for each gene in Normal group and Cirrhosis group. Each circle 

expresses an expression value for a gene; those circles that are found close to the red line are not differentially expressed genes 

while circles expressing values for genes away from the red line are differentially expressed genes. (B)Volcano Plot expresses the 

means of expression values for genes in the Normal_Cirrhosis group. The fold cut off was at value of 2 and the p-value that was 

used was 0.01. Circles representing expression values for genes in both groups (normal and cirrhosis) that are found away from 

the volcano represent both statistical and biological significance and are further filtered out.  

 

In figure 5B the expression values of genes are plotted against –log p-value and fold 

change. In order to analyze for those genes whose expression values are not only biologically 

relevant but statistically relevant as well. In figure 3B those circles on the right of the red line 

and above the green line have statistical and biological significance and are upregulated as well; 
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while those genes whose expression values lie to the left of the blue line and above the green line 

show to be both statistically and biologically significant and downregulated as well.  

These filtered genes that are shown to have both biological and statistical significance were 

determined and further analyzed for their corresponding regulating transcription factors as well 

as miRNAs. In order to further analyze the factors that affect differentially expressed genes 

between normal tissue samples and cirrhotic tissue samples with HCV infection transcription 

factors for differentially expressed genes were determined using a series of databases and online 

resources. These transcription factors were further assessed for their frequency in regulating all 

of the differentially expressed genes in the group. In the Normal_Cirrhosis group 12 transcription 

factors were found to regulate differentially expressed genes most frequently. These transcription 

factors include AML1a, AP-1, ATF-2, c-Jun, CREB, C/ebpalpha, HNF-1, HNF-4alpha, PPAR-

gamma, STAT3, STAT5, and NF-Kẞ. In figure 6 a network was constructed showing those 

transcription factors and the differentially expressed genes that they regulate.  
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Figure 6: Network visualization of transcription factors that were found to be the most common in regulation of differentially 

expressed genes in Group Normal_Cirrhosis. The blue circles represent differentially expressed genes and their respective size is 

representative of their fold change value. The green circles represent the transcription factors that are regulating their respective 

differentially expressed genes.  

 

Another database was used in order to determine miRNAs that regulate differentially expressed 

genes. This allowed for an annotation of differentially expressed genes with the miRNAs that 

regulate them. A plethora of potential miRNAs were found to regulate genes in this group and 

due to the plethora of miRNA that are naturally found in the liver, miRNAs that were chosen for 

further analysis were those that showed greatest expression pattern of genes that they regulated 

in the group. Also, a review of the literature made it possible to determine the type of regulation 

of these miRNAs observed in the presence of HCC. In the table 2 it becomes apparent that the 

majority of the miRNAs that are involved in regulation of differentially expressed genes are 

downregulated in the presence of HCC. The miRNAs in the table 2 were constructed in a 
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network as a visualization of the genes that are involved with these miRNAs. In figure 7 it 

becomes apparent that miRNAs are involved in the regulation of a vast array of genes.  

Table 2: Differentially expressed genes annotated with their potential miRNAs were analyzed for expression patterns of 

miRNAs. The miRNAs reported in this table showed the highest expression patterns for differentially expressed genes in all 6 

groups reported previously. The majority of these miRNAs were found to be down regulated in the presence of HCC.  

miRNAs with highest Expression Patterns 

miRNA 

Regulation in 

HCV-HCC Reference 

miRNA-335-5p Up  (53) 

miRNA-128 UP  (54) 

miRNA-27 a&b Down  (55) 

miRNA-106a Down  (55)  

miRNA-15a Down  (55) 

miRNA-181 a&c UP  (55) 

miRNA-93 Up  (55) 

Let-7 Down  (56) 

miRNA-199a-3p Down  (56) 

miRNA-124 Down  (57) 

miRNA-124-3p Down  (57) 

miRNA-29 a&c Down  (57) 

miRNA-26b-5p Down (58)  

miRNA-200 a&b Down  (58) 

miRNA-607  ?  none 
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Figure 7: Network visualization of most common miRNAs regulating differentially expressed genes in group 

(Normal_Cirrhosis). The blue circles represent differentially expressed genes and their respective size is representative of their 

fold change value. The red circles represent the miRNAs that are regulating their respective differentially expressed genes.  

Group 2 Normal_Cirrhosis HCC 

 

The expression values in RMA format obtained from Normal sample cluster were analyzed 

against Cirrhosis HCC samples and a scatter plot was produced. In figure 8A, each gene has an 

expression value which corresponds to a specific circle in the plot. Those circles that are away 

from the red line correspond to genes that are differentially expressed.  In the case of normal and 

cirrhosis HCC the majority of the differentially expressed genes are found below the red line. 

The scatter plot only indicates that there are differentially expressed genes, yet to test whether 

these genes are statistically and biologically significant a volcano plot was employed.  
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Figure 8: (A) Scatter plot of means of expression values for each gene in Normal group and Cirrhosis HCC group. Each circle 

expresses an expression value for a gene; those circles that are found close to the red line are not differentially expressed genes 

while circles expressing values for genes away from the red line are differentially expressed genes. (B) Volcano Plot expresses 

the means of expression values for genes in the Normal_Cirrhosis HCC group. The fold cut off was at value of 2 and the p-value 

that was used was 0.01. Circles representing expression values for genes in both groups (normal and cirrhosis HCC) that are 

found away from the volcano represent both statistical and biological significance and are further filtered out 

 

The volcano plot in figure 8B, displays the mean expression values for genes in both normal and 

cirrhosis HCC plotted against –log(p-value) and fold change. The fold cutoff for this analysis 

was 2 while the p-value was 0.01, however the –log(p-value) was plotted so that positive whole 

numbers were obtained and plotted. Here the majority of the genes with both biological and 

statistical significance lie to the right and left of the red and blue line, respectively. These genes 

were further filtered out in order to determine the transcription factors that facilitate their 

regulation.  

Differentially expressed genes that were found to have both biological and statistical significance 

that had been filtered out, were further annotated with their respective transcription factors. 

Using different databases transcription factors were analyzed for a common expression pattern in 

their regulation of transcription amongst differentially expressed genes in 

Normal_CirrhosisHCC. Twelve transcription factors were found; AML1a, AP-1, ATF-2, c-Jun, 

CREB, C/ebpalpha, HNF-1, HNF-4alpha, PPAR-gamma, STAT3, STAT5, and NF-Kẞ. In figure 
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9 a network was constructed to show the transcription factors and the differentially expressed 

genes that they regulate. 

 

 
Figure 9: Network visualization of transcription factors that were found to be the most common in regulation of differentially 

expressed genes in Group Normal_Cirrhosis HCC. The blue circles represent differentially expressed genes and their respective 

size is representative of their fold change value. The green circles represent the transcription factors that are regulating their 

respective differentially expressed genes. 

 

Another database was used in order to determine miRNAs that regulate differentially expressed 

genes. This allowed for an annotation of differentially expressed genes with the miRNAs that 

regulate them. A plethora of potential miRNAs were found to regulate genes in this group and 

due to the plethora of miRNA that are naturally found in the liver, miRNAs that were chosen for 

further analysis were those that showed greatest expression pattern of genes that they regulated 

in the group. Also, a review of the literature made it possible to determine the type of regulation 
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of these miRNAs observed in the presence of HCC. The network visualization in figure 10 

shows the miRNAs that had the greatest expression pattern of regulation of genes in the group.  

 
Figure 10: Network visualization of most common miRNAs regulating differentially expressed genes in group 

(Normal_Cirrhosis HCC). The blue circles represent differentially expressed genes and their respective size is representative of 

their fold change value. The red circles represent the miRNAs that are regulating their respective differentially expressed genes.  

Group 3 Normal_ HCC 

 For group 3 a pairwise comparison for normal sample cluster was analyzed against HCC 

samples and a scatter plot was produced. In figure 11A, each gene has an expression value which 

corresponds to a specific circle in the plot. Those circles that are away from the red line 

correspond to genes that are differentially expressed.  In the case of normal and HCC the 

majority of the differentially expressed genes are found below the red line. The scatter plot only 

indicates that there are differentially expressed genes, yet to test whether these genes are 

statistically and biologically significant a volcano plot was employed. 
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Figure 11: (A) Scatter plot of means of expression values for each gene in Normal group and HCC group. Each circle expresses 

an expression value for a gene; those circles that are found close to the red line are not differentially expressed genes while 

circles expressing values for genes away from the red line are differentially expressed genes. (B) Volcano Plot expresses the 

means of expression values for genes in the Normal_ HCC group. The fold cut off was at value of 2 and the p-value that was used 

was 0.01. Circles representing expression values for genes in both groups (normal and HCC) that are found away from the 

volcano represent both statistical and biological significance and are further filtered out. 

 

The volcano plot in figure 11B displays the mean expression values for genes in both normal and 

HCC plotted against –log (p-value) and fold change. The fold cutoff for this analysis was 2 while 

the p-value was 0.01, however the –log (p-value) was plotted so that positive whole numbers 

were obtained and plotted. Here the majority of the genes with both biological and statistical 

significance lie to the right and left of the red and blue line, respectively. These genes were 

further filtered out in order to determine the transcription factors that facilitate their regulation. 

Differentially expressed genes that were found to have both biological and statistical significance 

that had been filtered out, were further annotated with their respective transcription factors. 

Using different databases these transcription factors were analyzed for a common expression 

pattern in their regulation of transcription amongst differentially expressed genes in 

Normal_HCC. Twelve transcription factors were found; AML1a, AP-1, ATF-2, c-Jun, CREB, 

C/ebpalpha, HNF-1, HNF-4alpha, PPAR-gamma, STAT3, STAT5, and NF-Kẞ. In figure 12 a 

network was constructed to show those transcription factors and the differentially expressed 

genes that they regulate. 
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Figure 12: Network visualization of transcription factors that were found to be the most common in regulation of differentially 

expressed genes in Group Normal_ HCC. The blue circles represent differentially expressed genes and their respective size is 

representative of their fold change value. The green circles represent the transcription factors that are regulating their respective 

differentially expressed genes. 

 

Another database was used in order to determine miRNAs that regulate differentially expressed 

genes. This allowed for an annotation of differentially expressed genes with the miRNAs that 

regulate them. MiRNAs that were chosen for further analysis were those that showed greatest 

expression pattern of genes that they regulated in the group. In figure 13, a network visualization 

shows the miRNAs that had the greatest expression pattern of regulation of genes in the group.  
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Figure 13: Network visualization of most common miRNAs regulating differentially expressed genes in group (Normal_ HCC). 

The blue circles represent differentially expressed genes and their respective size is representative of their fold change value. The 

red circles represent the miRNAs that are regulating their respective differentially expressed genes. 

Group 4 Cirrhosis_ Cirrhosis HCC 

In order to analyze how transcription regulation is influenced in stages to carcinoma each 

samples’ clusters were analyzed in three groups the first of which cirrhosis_ cirrhosis HCC. 

Here, the expression values in RMA format obtained from cirrhosis sample cluster were 

analyzed against cirrhosis HCC samples and a scatter plot was produced. In figure 14A, each 

gene has an expression value which corresponds to a specific circle in the plot. Those circles that 

are away from the red line correspond to genes that are differentially expressed.  In the case of 

cirrhosis and cirrhosis HCC the majority of the differentially expressed genes are found close to 

the red line with only a few scattered circles away from the red line. The scatter plot only 

indicates that there are differentially expressed genes, yet to test whether these genes are 

statistically and biologically significant a volcano plot was employed.  
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Figure 14: (A) Scatter plot of means of expression values for each gene in cirrhosis group and cirrhosis HCC group. Each circle 

expresses an expression value for a gene; those circles that are found close to the red line are not differentially expressed genes 

while circles expressing values for genes away from the red line are differentially expressed genes. (B) Volcano Plot expresses 

the means of expression values for genes in the cirrhosis_ cirrhosis HCC group. The fold cut off was at value of 0.75 and the p-

value that was used was 0.01. Circles representing expression values for genes in both groups (cirrhosis and cirrhosis HCC) that 

are found away from the volcano represent both statistical and biological significance and are further filtered out. 

 

The volcano plot in figure 14B, displays the mean expression values for genes in both cirrhosis 

and cirrhosis HCC plotted against –log (p-value) and fold change. The fold cutoff for this 

analysis was 0.75 while the p-value was 0.01, however the –log (p-value) was plotted so that 

positive whole numbers were obtained and plotted. Here the majority of the genes with both 

biological and statistical significance are upregulated and lie to the right and left of the red and 

blue line, respectively and above the green line. Those circles that lie to the right and left of the 

red and blue line and below the green line are down regulated. These genes were further filtered 

out in order to determine the transcription factors that facilitate their regulation. 

Differentially expressed genes that were found to have both biological and statistical significance 

that had been filtered out, were further annotated with their respective transcription factors. 

Using different databases these transcription factors were analyzed for a common expression 

pattern in their regulation of transcription amongst differentially expressed genes in cirrhosis_ 

cirrhosis HCC. Twelve transcription factors were found; AML1a, AP-1, ATF-2, c-Jun, CREB, 
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C/ebpalpha, HNF-1, HNF-4alpha, PPAR-gamma, STAT3, STAT5, and NF-Kẞ. In figure 15, is a 

network showing those transcription factors and the differentially expressed genes that they 

regulate. 

 
Figure 15: Network visualization of transcription factors that were found to be the most common in regulation of differentially 

expressed genes in group cirrhosis_ cirrhosis HCC. The blue circles represent differentially expressed genes and their respective 

size is representative of their fold change value. The green circles represent the transcription factors that are regulating their 

respective differentially expressed genes. 

 

Another database was used in order to determine miRNAs that regulate differentially expressed 

genes. This allowed for an annotation of differentially expressed genes with the miRNAs that 

regulate them. MiRNAs that were chosen for further analysis were those that showed greatest 

expression pattern of genes that they regulated in the group. Also, a review of the literature made 

it possible to determine the type of regulation of these miRNAs observed in the presence of 
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HCC. The network visualization in figure 16, shows the miRNAs that had the greatest expression 

pattern of regulation of genes in the group. 

 
Figure 16: Network visualization of most common miRNAs regulating differentially expressed genes in group 

(cirrhosis_cirrhosis HCC). The blue circles represent differentially expressed genes and their respective size is representative of 

their fold change value. The red circles represent the miRNAs that are regulating their respective differentially expressed genes. 

Group 5 Cirrhosis_HCC 

Here, the expression values in RMA format obtained from cirrhosis sample cluster were 

analyzed against HCC samples and a scatter plot was produced. Each gene has an expression 

value which corresponds to a specific circle in the plot. Those circles that are away from the red 

line correspond to genes that are differentially expressed as shown in figure 17A.  In the case of 

cirrhosis and HCC the majority of the differentially expressed genes are found close to the red 

line with only a few scattered circles away from the red line. The scatter plot in figure 17A, only 

indicates that there are differentially expressed genes, yet to test whether these genes are 

statistically and biologically significant a volcano plot was employed.  
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Figure 17: (A) Scatter plot of means of expression values for each gene in cirrhosis group and HCC group. Each circle expresses 

an expression value for a gene; those circles that are found close to the red line are not differentially expressed genes while 

circles expressing values for genes away from the red line are differentially expressed genes. (B) Volcano Plot expresses the 

means of expression values for genes in the cirrhosis_HCC group. The fold cut off was at value of 0.75 and the p-value that was 

used was 0.01. Circles representing expression values for genes in both groups (cirrhosis and HCC) that are found away from the 

volcano represent both statistical and biological significance and are further filtered out. 

 

The volcano plot in figure 17B displays the mean expression values for genes in both cirrhosis 

and HCC plotted against –log (p-value) and fold change. The fold cutoff for this analysis was 

0.75 while the p-value was 0.01, however the –log (p-value) was plotted so that positive whole 

numbers were obtained and plotted. Here the majority of the genes with both biological and 

statistical significance are upregulated and lie to the right and left of the red and blue line, 

respectively and above the green line. Those circles that lie to the right and left of the red and 

blue line and below the green line are down regulated. These genes were further filtered out in 

order to determine the transcription factors that facilitate their regulation. 

Differentially expressed genes that were found to have both biological and statistical significance 

that had been filtered out, were further annotated with their respective transcription factors. 

Using different databases these transcription factors were analyzed for a common expression 

pattern in their regulation of transcription amongst differentially expressed genes in 

Cirrhosis_HCC. Twelve transcription factors were found; AML1a, AP-1, ATF-2, c-Jun, CREB, 

C/ebpalpha, HNF-1, HNF-4alpha, PPAR-gamma, STAT3, STAT5, and NF-Kẞ. In figure 18, is a 
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network showing those transcription factors and the differentially expressed genes that they 

regulate. 

 
Figure 18: Network visualization of transcription factors that were found to be the most common in regulation of differentially 

expressed genes in group cirrhosis_ HCC. The blue circles represent differentially expressed genes and their respective size is 

representative of their fold change value. The green circles represent the transcription factors that are regulating their respective 

differentially expressed genes. 

 

Another database was used in order to determine miRNAs that regulate differentially expressed 

genes. This allowed for an annotation of differentially expressed genes with the miRNAs that 

regulate them. A plethora of potential miRNAs were found to regulate genes in this group and 

due to the plethora of miRNA that are naturally found in the liver, miRNAs that were chosen for 

further analysis were those that showed greatest expression pattern of genes that they regulated 

in the group. Also, a review of the literature made it possible to determine the type of regulation 

of these miRNAs observed in the presence of HCC. The network visualization in figure 19, 

shows the miRNAs that had the greatest expression pattern of regulation of genes in the group. 
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Figure 19: Network visualization of most common miRNAs regulating differentially expressed genes in group (cirrhosis_ HCC). 

The blue circles represent differentially expressed genes and their respective size is representative of their fold change value. The 

red circles represent the miRNAs that are regulating their respective differentially expressed genes. 

Group 6 Cirrhosis HCC_ HCC 

Expression values in RMA format obtained from cirrhosis HCC sample cluster was analyzed 

against HCC sample cluster and a scatter plot was produced. Each gene has an expression value 

which corresponds to a specific circle in the plot. Those circles that are away from the red line 

correspond to genes that are differentially expressed.  In figure 20A, for cirrhosis HCC and HCC 

the majority of the differentially expressed genes are found close to the red line with only a few 

scattered circles away from the red line. The scatter plot only indicates that there are 

differentially expressed genes, yet to test whether these genes are statistically and biologically 

significant a volcano plot was employed.  
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Figure 20: (A) Scatter plot of means of expression values for each gene in cirrhosis HCC group and HCC group. Each circle 

expresses an expression value for a gene; those circles that are found close to the red line are not differentially expressed genes 

while circles expressing values for genes away from the red line are differentially expressed genes. (B) Volcano Plot expresses 

the means of expression values for genes in the cirrhosis HCC_HCC group. The fold cut off was at value of 1.5 and the p-value 

that was used was 0.01. Circles representing expression values for genes in both groups (cirrhosis HCC and HCC) that are found 

away from the volcano represent both statistical and biological significance and are further filtered out. 

 

The volcano plot in figure 20B displays the mean expression values for genes in both normal and 

HCC plotted against –log (p-value) and fold change. The fold cutoff for this analysis was 1.5 

while the p-value was 0.01, however the –log (p-value) was plotted so that positive whole 

numbers were obtained and plotted. Here the genes with both biological and statistical 

significance are upregulated and lie to the right and left of the red and blue line, respectively and 

above the green line. The majority of the circles representing differentially expressed genes 

which lie to the right and left of the red and blue line and below the green line are down 

regulated. These genes were further filtered out in order to determine the transcription factors 

that facilitate their regulation. 

Differentially expressed genes that were found to have both biological and statistical significance 

that had been filtered out, were further annotated with their respective transcription factors. 

Using different databases the transcription factors were analyzed for a common expression 

pattern in their regulation of transcription amongst differentially expressed genes in Cirrhosis 

HCC_HCC. Twelve transcription factors were found; AML1a, AP-1, ATF-2, c-Jun, CREB, 
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C/ebpalpha, HNF-1, HNF-4alpha, PPAR-gamma, STAT3, STAT5, and NF-Kẞ. In figure 21, is a 

network showing those transcription factors and the differentially expressed genes that they 

regulate. 

 
Figure 21: Network visualization of transcription factors that were found to be the most common in regulation of differentially 

expressed genes in group cirrhosis HCC_ HCC. The blue circles represent differentially expressed genes and their respective size 

is representative of their fold change value. The green circles represent the transcription factors that are regulating their 

respective differentially expressed genes. 

 

Another database was used in order to determine miRNAs that regulate differentially expressed 

genes. This allowed for an annotation of differentially expressed genes with the miRNAs that 

regulate them. A plethora of potential miRNAs were found to regulate genes in this group and 

due to the plethora of miRNA that are naturally found in the liver, miRNAs that were chosen for 

further analysis were those that showed greatest expression pattern of genes that they regulated 

in the group. Also, a review of the literature made it possible to determine the type of regulation 
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of these miRNAs observed in the presence of HCC. The network visualization in figure 22, 

shows the miRNAs that had the greatest expression pattern of regulation of genes in the group. 

 
Figure 22: Network visualization of most common miRNAs regulating differentially expressed genes in group (cirrhosis_ HCC). 

The blue circles represent differentially expressed genes and their respective size is representative of their fold change value. The 

red circles represent the miRNAs that are regulating their respective differentially expressed genes. 

 

In figure 23, the transcription factors with the highest expression in all 6 pairwise combinations 

were further analyzed through a systematic analysis of the literature that is present and it was 

determined that these transcription factors are involved in regulating HCV induced HCC into 

three stages angiogenesis, steatosis, and cancer induction. Also in figure 23, the miRNAs with 

the highest expression in all 6 pairwise combinations were analyzed similarly, and it was 

determined that the expression of miRNAs decreases as the liver digresses to carcinoma. 
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Figure 23: Overview of the transcription factors that regulate HCV induced HCC in each stage as the liver digresses to 

eventually becoming carcinomic; and the digression of miRNA expression in liver tissue as they digress to carcinoma.  

 

However, in order to account for the differentially expressed genes that are regulated by the master 

regulators that were determined in this study and how they are biologically/ functionally organized 

another figure was produced. In figure 24, the differentially expressed regulated by their transcription 

factors in each stage in the digression of the liver is displayed so as to demonstrate the overall findings f 

this study and to illustrate the actions of all the key players in the transcription regulation of HCV- 

induced HCC. 
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Figure 24: Transcription Regulation HCV-induced HCC. This is an illustration of the master regulators in HCV-induced HCC 

and their differentially expressed genes. The key genes and transcription factors associated with each condition of the liver is 

illustrated as they were found in each of the 6 pairwise comparisons, also with the general expression of miRNAs as the liver 

transitions from one condition to the next. 
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Chapter 5. Discussion and Conclusions 

I. Differentially Expressed Genes 
In the present study the aim was to identify the transcriptional regulation that gears differentially 

expressed genes in the progression of HCV induced HCC. This study highlights the molecular 

switches that may be involved in this progression and takes into consideration that transcriptional 

regulation is not only controlled by transcription factors but by other regulatory elements such as 

miRNAs that may influence the expression of genes. This analysis was conducted based on the 

findings of multiple studies, and therefore it must be noted that HCV induced HCC is a results of 

a combination of different regulatory elements both mRNA and miRNA in basis.  

 However, to begin it is vital to understand the differentially expressed genes that underlie this 

transcriptional regulation.  In this study, after analyzing unique probe sets for every tissue type/ 

condition it was determined that the gene expression patterns varied significantly among the 

HCC and normal liver samples. These findings coincide with the study from which the 

microarray samples were attained Mas V.R. and colleagues, whose findings also show that genes 

associated with cell proliferation and mitosis had increased expression in HCC samples, while 

the genes that were expressed in lower levels were genes that are specifically expressed in 

differentiated hepatocytes. (Mas et al., 2009) Also, the findings in the present study coincide 

with the findings of Mas V.R. and colleagues for gene expression patterns amongst the 4 various 

tissue types/conditions. Yet, the DAVID analysis that was created for each pairwise comparison 

in the various tissue types/conditions show that between normal and HCC samples differentially 

expressed genes cluster functionally in signaling within the cell with an enrichment score of 

9.13. (Figure 25) Again, here it becomes apparent that specificity in the functionality of genes is 

no longer present and the main function for differentially expressed genes in the late stage of 
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liver disease is signaling. Also, the functionality of the genes does not change amongst the 

various pairwise comparisons between normal liver and cirrhosis as well as cirrhosis HCC. In 

figure 26 and 27 below it becomes apparent that the primary function of differentially expressed 

genes in each pairwise comparison (cirrhosis and cirrhosis HCC) is signaling with an enrichment 

score of 13 and 18.31 respectively. 

 
Figure 25: DAVID analysis, functional annotation clustering of differentially expressed genes in the pairwise comparison 

between Normal and HCC samples. With an enrichment score of 9.13 the primary cluster is found to be with genes involved in 

signaling.  



www.manaraa.com

62 
 

 
Figure 26: DAVID analysis, functional annotation clustering of differentially expressed genes in the pairwise comparison 

between Normal and cirrhosis samples. With an enrichment score of 13 the primary cluster is found to be with genes involved in 

signaling. 

 
Figure 27: DAVID analysis, functional annotation clustering of differentially expressed genes in the pairwise comparison 

between Normal and cirrhosis HCC samples. With an enrichment score of 18.31 the primary cluster is found to be with genes 

involved in signaling. 

 

 Since cirrhosis is an established risk factor for HCC the study by Mas V.R. and colleagues 

compared HCV-HCC samples with HCV cirrhosis samples they show that cell adhesion, cell 

division, and apoptosis were the more important cellular and molecular functions.(59) They also 
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found a lower number of differentially expressed genes in this pairwise comparison.  These 

findings are similar to the findings of this study in that the DAVID analysis in figures 28, 29, and 

30 that was used to compare cirrhosis samples to HCC in the different stages also was able to 

find that the primary functional clusters were involved in cell attachment, as well as key words 

involved in cell division and apoptosis.  

 
Figure 28: DAVID analysis, functional annotation clustering of differentially expressed genes in the pairwise comparison 

between cirrhosis and cirrhosis HCC samples. With an enrichment score of 3.08 the primary cluster is found to be with genes 

involved in secretion and cell attachment. 

 

 



www.manaraa.com

64 
 

Figure 29: DAVID analysis, functional annotation clustering of differentially expressed genes in the pairwise comparison 

between cirrhosis and HCC samples. With an enrichment score of 2.46 the primary cluster is found to be with genes involved in 

secretion and signaling. 

 

 
Figure 30: DAVID analysis, functional annotation clustering of differentially expressed genes in the pairwise comparison 

between HCC and cirrhoisHCC samples. With an enrichment score of 1.23 the primary cluster is found to be with genes involved 

in response to stimulus and protein activity. 

 

In this study it was also observed that gene expression related to normal liver function 

significantly decreased across tissue types from normal liver, to cirrhosis, to cirrhosis HCC, to 
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HCC; which coincides with the findings of (Mas et al., 2009).  It was also observed that each 

pathological stage in the liver progression to HCC in the presence of HCV infection is marked by 

gene signatures; which are dictated by the master regulators that control their expression. 

Amongst the main signaling pathways that were found to be prevalent was the JAK/STAT 

signaling pathway, which Mas V.R. and his group noted to represent the more important 

downregulated canonical pathways. This pathway is one of the primary pathways that once 

downregulated tends to induce cancer. (Mas et al., 2009) 

The David analysis above for each of the pairwise comparisons coincides with the findings of 

Mas V., etal in that there are gene signatures for each pathological tissue type in the progression 

to HCC. Gene signatures, are specific sets of genes with a similar biological function with high 

expression in each biological tissue type. Biologically, it can be observed that these gene 

signatures change from normal to cirrhotic tissue as genes struggle to maintain normal 

functioning such as cell adhesion and cell signaling. Then, as the condition of the liver digresses 

the gene signatures for cirrhosis HCC and HCC tissues changes as well as cells struggle to stay 

alive and therefore genes that are more prevalent are those involved in proliferation and 

apoptosis. It is also important to note that differentially expressed genes in each pairwise 

comparison show a progression of the condition of the liver. As the condition of the liver 

progresses to carcinoma the regulation of these genes is determined not only by the condition of 

the liver but also by the presence of regulatory elements underlying the command of that gene 

and in turn controlling the final state of the liver. These regulatory elements are transcription 

factors and miRNAs that underlie the switching on/off of these genes and in turn controlling the 

molecular biology of the condition of the liver as it progresses to HCC. 
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II. Transcription Factors 
 

As HCV infection aggregates more and more within the liver, the condition of the liver 

worseness. As the liver digresses from a cirrhotic liver, to steatosis of the liver, and eventually 

becoming cancerous. Although, this sequence of events is not dogma and the liver may digress 

from any one of these conditions directly to carcinoma, if the attributes that satisfy the conditions 

for each event are present the liver will digress in this sequence and eventually become 

carcinomic. Each one of these conditions entails a different molecular key switch as different 

genes are turned on and off to substitute for the digressing functionality of the liver. As 

previously noted in each of the pairwise comparisons of the liver it was found that cell signaling 

as well as other important cellular functions were of the most common functionalities effected as 

the condition of the liver digresses from normal to cancerous in the presence of HCV infection. It 

is important to note that also of the keywords that arise in the functional annotation clustering 

tool (DAVID) is the keyword “fat”; this also is of value in that it shows that the functionality of 

the differentially expressed genes is also linked to lipid metabolism.  

HCV infection relies heavily on lipid metabolism in the liver for viral entry and replication. 

Assembly of HCV virion is brought about by the synchronized actions of HCV structural 

proteins along with the viral replication complex, and takes place in close proximity to 

membrane bound lipid droplets (LD). Lipid droplets (LDs) are intracellular organelles storing 

cholesterol and triglycerides, and play an essential role in viral packaging.  Inhibition of the 

synthesis of their lipid components blocks viral assembly. In the blood HCV virions circulate as 

lipo-viro-particles (LVPs) which are found to be associated with very low or low-density 

lipoproteins (VLDLs and LDLs). These LVPs may also associate with high levels of 
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triglycerides, Apolipoprotein (Apo) E, ApoC, ApoB and low levels of cholesterol or 

phospholipids (17). This HCV virion association with lipids may facilitate its infection of 

hepatocytes which are the primary target for infection while at the same time aiding in its escape 

from neutralizing antibodies. (18) This in turn would explain the association between 

differentially expressed genes and the keyword FAT in the functional annotation clustering of 

genes.  

Annotation of the differentially expressed genes with their respective transcription factors 

coincides with the functional annotation of the differentially expressed genes in that it was found 

that main transcription factors involved in regulation of the differentially expressed genes were 

marked by 3 hepatic conditions; hepatic angiogenesis, hepatic steatosis, and hepatic carcinoma. 

In figure 4 above it becomes apparent that many genes involved in normal liver function are 

being regulated by the transcription factors involved in each hepatic condition. However as the 

number of genes in normal liver function decreases the master transcriptional regulators dictate 

the expression of specific genes involved in other pathways such as cell proliferation this is 

observed in figure 7, 10, 13, 16, and 19. Each one of these hepatic conditions calls upon a 

different key switch of genes and transcription factors however, it explains the digression of the 

liver to carcinoma and foretells the possible points at which molecular intervention may be key 

to stop this digression and possibly save the liver or freeze it in its current state.  

a. Hepatic Angiogenesis 

 

Angiogenesis and the disruption of liver vascular architecture have been linked to progression to 

cirrhosis and liver cancer (HCC) in chronic liver diseases, which contributes both to increased 

hepatic vascular resistance and portal hypertension and to decreased hepatocyte perfusion. (60) 
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Angiogenesis was also found to be important in adult tissue repair. (61)In the present study, 5 

main transcription factors were determined to have a common expression pattern amongst all 6 

pairwise comparisons. These 5 transcription factors may be the key switches in the effect of 

transcriptional regulation of differentially expressed genes; AP-1, C-JUN, AML1, CREB, and 

ATF-2.  From the literature it was apparent that these 5 transcription factors regulate genes that 

are involved in hepatic angiogenesis.  

Angiogenesis is implicated in cancer development by favoring progression, growth, and 

metastasis of cancer and is regulated by growth factors, including transforming growth factor-

beta (TGF-ẞ), basic fibroblast growth factor, or platelet-derived growth factor. In tumor cells 

induction of hepatic angiogenesis during chronic HCV infection may contribute to the early 

development of cancer cells. (62) 

One of the 5 transcription factors acute myelogenous leukemia 1 (AML1)/runt-related 

transcription factor 1 (Runx1) belongs to a family of transcriptional regulators called Runx. 

Gene-targeting studies in mice have demonstrated that AML1 is essential for early development 

of definitive hematopoiesis. (63) A study by Takakura and colleagues was able to show that 

AMl1 deficient embryos lack definitive hematopoiesis and thus show defective angiogenesis in 

the head and pericardium. (61) In a study by Hassan M. and colleagues the mechanistic role of 

HCV core protein is better understood as they provide evidence for its role in the regulation of 

hepatic angiogenesis during the course of HCV infection and demonstrate its ability to trigger the 

production of both TGF-ẞ2 and VEGF proteins by multiple pathways including PKC, RB/E2F1, 

ASK1-JNK/p38, and ERK. These pathways include transcription factors that were found to be 

the main transcription regulators of differentially expressed genes. (62)  Of these pathways, the 

PKC pathway was found to turn on CREB and ATF-2, while ASK1-JNK/p38 was found to 
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control AP-1.  AP-1 is an important target for the JNK signaling pathway and is composed of Jun 

, Fos, and related bZIP subunit. (64) 

As the liver vascular architecture changes and the liver proceeds in the direction of fibrosis 

another condition starts to develop as well; hepatic steatosis. This condition may be in part as a 

reaction to the changes that are already taking place in the liver as the liver may call upon lipids 

for the increasing viral particles and replication that is present due to HCV infection. Rutkowski 

D.T. and colleagues suggest that one of the possible reasons behind steatosis is the suppression 

of a subset of metabolic transcription factors that regulate lipid homeostasis as a direct response 

to ER homeostasis.(65) The exact mechanism of this digression from hepatic angiogenesis to 

hepatic steatosis is unknown, however it is apparent that each condition hampers the 

functionality of the liver leading to carcinoma.  

b. Hepatic Steatosis 

 

Hepatic steatosis is common amongst patients with HCV as HCV core protein play an important 

role in the development of hepatic steatosis in HCV infection. HCV core protein has an elevated 

effect on the transcriptional activity of PPARγ (peroxisome proliferators-activated receptor γ). 

This transcription factor, PPARγ as well as HNF1, HNF4, and C/EBPα were found to be 

amongst the transcription factors with the highest expression patterns regulating differentially 

expressed genes in each of the 6 pairwise comparisons involved in this study.  

PPARγ is a master regulator for adipocyte differentiation and is important in the regulation of a 

number of genes involved in fatty acid and glucose metabolism. Thus down regulation of liver 

PPARγ which contributes to regulation of lipid synthesis, transport, and storage within 

hepatocytes, causes the development of hepatic steatosis.(66) CCAAT/enhancer-binding protein 
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alpha (C/ebpα) another transcriptional regulator found to have high expression pattern in 

differentially expressed genes has been shown to be involved in regulating gluconeogenesis and 

lipogenesis while being downregulated in response to hepatic steatosis.  

Hepatocyte nuclear factors 1 and 4 (HNF1 and HNF4) are a group of transcription factors that 

are involved with glucose, cholesterol, and fatty acid transport and metabolism. HCV induces 

HNF1 and HNF4 due to increased oxidative stress and direct protein-protein interactions 

between HCV non-structural component (NS) 5A and HNF1. Again, some HCV proteins, 

particularly the structural capsid protein, core, and the non-structural protein, NS5A, can induce 

hepatic steatosis by interfering with intracellular lipid metabolism. (67) Alteration of expression 

of these genes might be related to abnormal expression of metabolic enzymes again leading to 

hepatic steatosis. (68) 

Univariate and multivariate analyses identified hepatic steatosis, together with aging, cirrhosis, 

and lack of IFN treatment, as significant independent risk factors for HCC. Several studies have 

revealed that hepatic steatosis, including steatosis induced by HCV core protein, predisposes to 

lipid peroxidation and excess free-radical activity with the potential risk of genomic mutations. 

Hepatic steatosis is an independent risk factor for HCC in patients with chronic HCV infection, 

although the factors responsible for steatosis could not be identified clearly. (69) 

 

c. Cancer Induction 

 

The production of a great number of cytokines, chemokines and growth factors, favoring 

increased cellular proliferation accompany the continuous cell death and inflammatory cell 

infiltration during cancer development. This continuing hepatocyte death triggers liver repair and 
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regeneration and eventually leads to severe liver fibrosis or cirrhosis. Multiple signaling 

pathways are involved in this injury-inflammation-regeneration response and in human HCC 

development. In the present study 3 transcription factors were found to have high expression 

patterns amongst all 6 pairwise comparisons as a result of prolonged HCV infection; these 

transcription factors include NF-κB, STAT3, and STAT 5.  

 

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein complex that 

regulates cell survival, immunity and inflammation, and is one of the more important pathways 

that is activated during liver injury and inflammation. One of the main functions of NF-κB in 

hepatocytes appears to be the production of cytokines that maintain the inflammatory 

microenvironment in which tumors develop.(70) 

 

Signal transducer and activator of transcription 3 (STAT3) is another transcriptional factor 

involved in immune responses, inflammation and tumorigenesis, and was found to be critical for 

compensatory liver regeneration and chemically-induced HCC development. STAT3 belongs to 

the signal transducer and activator of transcription (STAT) family. Like its relatives, STAT3 is 

inactive in non-stimulated cells, but is rapidly activated by various cytokines and growth factors, 

such as IL-6 and EGF family members, as well as hepatocyte growth factor (HGF) STAT3 in 

cancer cells is activated by cytokines and growth factors that are produced within the tumor 

microenvironment. The expression of IL-6, one of the major STAT3-activating cytokines, and is 

elevated in human liver diseases and HCC. (71) 
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Signal transducer and activator of transcription 5 (STAT5) proteins are involved in cytosolic 

signaling and in mediating the expression of specific genes. While STAT5 activation plays an 

important role in promoting tumorigenesis via the upregulation of anti-apoptotic, cell 

proliferative, and invasion of metastasis-related genes. (71) 

III. miRNAs 

The molecular mechanisms underlying transcriptional regulation of miRNA genes in the liver 

remain largely unknown. Whether transcription factors are also involved in the transcriptional 

regulation of miRNAs in the liver is unclear since the functional expression of transcription 

factors can also be regulated by miRNAs. Yet, it is clear that miRNAs can potentially regulate 

every aspect of cellular activity and a diverse spectrum of liver functions. (54) 

 

In the present study it was observed that each tissue type or condition had its own respective 

signature miRNA pattern, however there was a commonality amongst all 6 pairwise comparisons 

that were analyzed as shown in the table 1. As was observed for the expression of genes 

regulated by the master transcription factors involved in each hepatic condition, the number of 

genes that are regulated by miRNAs decrease as the number of genes involved in normal liver 

function decreased. This can be observed in the networks above in figures 8, 11, 14, 17 and 20. 

However unlike transcription factors miRNAs did not show a functional relationship between the 

genes that they regulate; again this expresses the specificity by which miRNAs regulate the 

expression of genes. In table 2 the miRNAs that had the highest expression were annotated with 

their predicted differentially expressed target genes in all 6 pairwise comparisons. After analysis 

using functional annotation clustering it becomes apparent that the differentially expressed genes 
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that miRNAs regulate are involved in maintaining cellular homeostasis and the up keeping of fat 

metabolism.  Therefore, as cellular homeostasis becomes imbalanced and fat metabolism is 

disrupted the expression of miRNAs decreases as the liver digresses to carcinoma. 

Table 3: The miRNAs with the highest expression in all 6 pairwise combinations were annotated with their differentially 

expressed target genes.  

miRNAs Predicted Target Genes  

Let-7 THBS1, COL1A2, COL1A1, DKK3, ADAMTS1, KLF9 
 

miR-124-3p HLA-DPB1, COL4A1, TNFRSF21, CTGF, RAPGEF5, CALR, EMP1, 

IGFBP7, SNAI2, VIM, F3, KLF4, EMP1, IFI44L, MFAP4, RBPMS 
 

miR-124 ANK3, AQP1, VCAN, VIM, THBD, KLF9, GATA6, ZBTB43, CEBPA 
 

miR-29a LAMA2, EMP1, PDK4, COL1A2, COL1A1, CXCL12, ENG, CYR61, 

RAB20, MGAT4B 
 

miR-29c LAMA2, COL1A2, COL1A1, COL6A2, LAMA2, MGAT4B 

 

miR-26b-5p GEM, ITM2A, MGP, FBLN5, CXCL9, GPR183, ARL4C, LYZ, PDK4, 

GPR183, F3, CCL2, PDGFRA, TRIM22, VIM, TAGLN, FABP4, IFI44L, 

VIM, ARL4C, IL7R 

 
 

miR-335-5p TRIM22, PDK4, SOX9, PTGDS, CRISPLD2, CXCL9, 

PPP1R1A,TACSTD2, MGP, CCL20, FABP4, GEM, FBLN5, AREG, 

PLAT, EMP1, SEL1L3, KCTD12, SOX4, ID4, SH3YL1,  
 

miR-27a&b ST3GAL6, FBLN5, RGS1, LHFP, F3 
 

miR-106a ARL4C, FZD7, PDGFRA, TXNIP, F3, CD69, CELF2, ANKRD12, 

TMEM100, CD69, MCL1, IL6ST,PIK3R1,PDGFRA, UBE2W, 

ZBTB43, PTPN4, MCL, BBX, SLC4A4 
 

miR-128 PDGFRA, KLF4, APOLD1, UBE2W, PDGFRA, RAB20, MGAT4B 

miR-15a TXNIP, PDK4, CD69, EIF4B,TMEM100, ADAMTS1, HNRNPA1, ADAMTS1, 

SLC4A4, PIK3R1 

 

miR-181a CD69, VCAN, SPP1, EVI2A 

miR-181c CYR61, HSP90B1, ADM, CALR, SLA 

miR-199a-3p PDGFRA, CELF2, CXCL12, FGL2, CD44, KRT7, ZBTB43, PIK3R1, UBE2W, 

FOS 

miR-200a APOLD1, GATA6,  

miR-200b LHFP, ANK3, GEM, ADAMTSL2, KLF4, GPM6A, ZBTB38,  
 

miR-93 F3, CD69, FZD7, TGFB1I1, VIM, MCL1, BBX, SLC4A4, PTPN4 

 

miR-607 FZD7, IGJ, FGL2, CXCL12, LHFP, GJA1 
 

 

Of the miRNAs that were found to be downregulated miR-27, miR-199, miR-200, and let-7 

family members were amongst them and were found to target genes involved in cell cycle and 
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cell death regulation.(53) These miRNAs were also found in this study to have high expression 

in normal liver tissue and eventually no expression in carcinoma tissue with HCV infection. 

Downregulation of the miRNAs miR-26, miR-29, and  miR-124  have been implicated in cell 

proliferation, apoptosis, angiogenesis, and poor prognosis.(58) In a previous study, a correlation 

between miR-106a and the degree of differentiation was shown to  suggest an involvement of 

specific miRNAs in the progression of the disease.(54) Lee and colleagues provide data to 

support the down-regulation of miRNA miR15a and increased cellular proliferation. (58)  

 

MiRNAs that were found to be upregulated were miRNA-335-5p, miR-93, miR-181a & c, and 

miR-128. MiRNA-335-5p was found to be associated with non-alcoholic fatty liver disease and 

also showed a connection with metabolic disorders. (53) MiR-93 is overexpressed in HCC and 

may have a critical role in cell proliferation by regulating the G1-to-S cell cycle transition. (53) 

MiR-181 is upregulated and promotes migration and invasion of HCC cells.(56) The up-

regulated miR-128, has nearly perfect complementarity in its seed sequences with HCV RNA 

genomes and is capable of inhibiting HCV replication and infection.(54)  

As for miR-607 while it was of the miRNAs with high expression patterns for differentially 

expressed genes there was no information in the literature to date as to how it influences the 

digression in the condition of the liver or even how it regulates genes in the development of HCC 

in the liver. However, it can be noted that mIR-607 does act as a tumor suppressor in other 

cancers, such as male breast cancer.  

IV. Conclusions 
Transcriptional regulation of HCV-induced HCC is very complex in that it encompasses a wide 

variety of aspects as the liver travels from condition to condition in its progression to HCC. In 
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this study the aim was to focus on determining high expression patterns in transcriptional 

regulation of differentially expressed genes that are common in all 6 pairwise comparisons so as 

to outline the transcriptional regulation that underlies each condition in HCV-induced HCC. 

These master regulators in each condition may explain the underlying molecular mechanisms 

and signaling pathways that are influenced by the progression of liver disease. As was discussed 

above, the PKC pathway was found to turn on CREB and ATF-2, while ASK1-JNK/p38 was 

found to control AP-1 which is composed of Jun, Fos in hepatic angiogenesis. While in hepatic 

steatosis, master transcriptional regulators were found to manipulate metabolic enzymes that 

drastically change in the condition of the liver. In the progression to cancer, it seems that IKK 

dependent signaling as well as JAK-STAT pathway are the major contributors to the final stages 

of liver disease as cell proliferation and apoptosis provide the means for complete progression to 

HCC.  

Also, one of the major contributors in the progression of liver disease is the impact of miRNAs 

on transcriptional regulation again as was discussed above it is unclear whether transcription 

factors are also involved in the transcriptional regulation of miRNAs in the liver since the 

functional expression of transcription factors can also be regulated by miRNAs. Yet, it is clear 

that miRNAs can potentially regulate every aspect of cellular activity and a diverse spectrum of 

liver functions.(54) In this study it was apparent that there are a plethora of miRNAs that 

underlie the control of cellular homeostasis in the liver. It was also apparent that each liver 

condition had its signature expression pattern of miRNAs. Yet, the miRNAs that were found to 

have high expression patterns in all 6 pairwise comparisons were shown to be master regulators 

in transcriptional regulation and in turn having an impact on the conditions of the liver and the 

progression to HCC. 
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Chapter 6. Future Directions 

Understanding the molecular mechanisms that underlie the influence HCV has on the 

progression to HCC is of vital importance in that it aids in the ability to create a more precise 

treatment regime with the least amount of negative impact on the patient.  In the present study 

our aim was to determine transcriptional regulatory networks in HCV-induced HCC. Here we 

were able to determine master transcriptional regulators that dictate each stage in the progression 

to HCC with HCV infection. In the future we strive to accomplish 4 major objectives. 

Objective 1 

Determine the signature transcription factors with high expression patterns in each 

condition and the genes that they influence for a more honed understanding of the 

underlying molecular mechanism that influences cellular homeostasis in each stage of 

liver disease. This would also provide insight as to the possible signaling pathways that 

may be manipulated for stopping the progression of liver disease.  

Objective 2 

Determine the signature miRNAs with high expression patterns in each condition and the 

genes that they influence for a more honed understanding of the underlying molecular 

mechanism that influences cellular homeostasis in each stage of liver disease. This would 

also provide insight as to the possible signaling pathways that also may be manipulated 

for stopping the progression of liver disease.  

Objective 3 
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Determine whether transcription factors and miRNAs effect one another 

transcriptionally; and the influence this may have on differentially expressed genes in 

HCV-induced HCC and the progression of liver disease.  

Objective 4  

Determine specific transcription factors in conjunction with its specific miRNAs that 

influence transcription regulation together in order to provide a mechanistic tool that may 

be produced in order to give a better treatment option for HCV patients and stop the 

progression of the liver to HCC.  
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